
SWEN 262
Engineering of Software Subsystems

State Pattern

Superb Plumber SiblingsTM

1. In Superb Plumber SiblingsTM, the player avatar starts in

its small form.
a. Contact with an enemy results in losing a life (character death).
b. Acquiring a mushroom awards 1000 points and changes the player

avatar to its superb form.
c. Acquiring a fire flower awards 1000 points and changes the player

avatar to its shooter form.

2. While in superb form.
a. Contact with an enemy changes the player avatar to its small form.
b. Acquiring a mushroom awards 1000 points.
c. Acquiring a fire flower awards 1000 points and changes the player

avatar to its shooter form.

3. While in shooter form.
a. Contact with an enemy changes the player avatar to its small form.
b. Pressing the fire button shoots a fireball.
c. Acquiring a mushroom awards 1000 points.
d. Acquiring a fire flower awards 1000 points.

There are a number of ways that the
different states of the player avatar may
be handled...

State Diagrams
● But first, it can be helpful to create a state diagram of the system.

○ We will use UML statechart notation.

State 1 State 2

State 3

event [guard]/
action list

event [guard]

event /
action list

event

● A state diagram includes:
○ Each of the possible states that the system may be in at any given

time.

Indicate the initial state.

Indica
te th

e

termi
nal st

ate (
if

there
 is on

e).

○ The events that cause the system to transition from one state to
another.

■ Each event may define a guard condition that must be true
for the transition to occur. Guard conditions must be
mutually exclusive.

■ Each event may define an action list that is executed before
the transition occurs.

● A state diagram defines a finite state machine.
○ The system exists in exactly one state at a time.
○ In each state the system behaves differently.

■ Each and every method in an object may behave differently
depending on the current state.

fire button /
shoot fireball

contact with
enemy

mushroom /
1000 pts.

Superb Plumber SiblingsTM State Diagram

● As mentioned previously, the player avatar may

exist in one of three potential states.
○ Small Form
○ Superb Form
○ Shooter Form

Small Form Superb
Form

Shooter
Form

The player av
atar

starts in the s
mall

form.

● Different events may cause transitions from one

state to another.
○ Some events include an action list, e.g. awarding

1000 points.
○ There are no guard conditions in this diagram.

contact with
enemy contact with

enemy

mushroom /
1000 pts.

fire flower /
1000 pts.

fire flower /
1000 pts.

fire flower /
1000 pts.

● The same or similar events are handled

differently depending on which state the system

is in, e.g.
○ Contacting an enemy in small form loses a life.
○ Contacting an enemy in superb form transitions to

small form.

Conditionals

public void enemyContacted() {

 switch(currentState) {

 case SMALL_FORM:

 loseALife();

 break;

 case SUPERB_FORM:

 case SHOOTER_FORM:

 currentState = SMALL_FORM;

 shrinkAvatar();

 break;

 }

}

Every method on the player avatar changes behavior
depending on the current state using a conditional to
determine which code to execute, e.g. what to do when
the player contacts an enemy.

Q: What are the major drawbacks of this approach?

A: One massive class that contains all of the behavior for
all of the possible states is not very cohesive.

Adding new states (like invincibility!) requires modifying
all of the state-dependent methods (OCP).

All possible states and behavior are mixed together. This
makes it possible for the object to be in an inconsistent
state where some methods execute as though the
system is in one state and others execute as though it is
in a different state.

Subclassing

A: Create an abstract class for the player
avatar, and a different subclass for each
possible state.

But what decides which to instantiate?
What controls the transitions from one
instance to another when an event occurs?

How is player state (like score and
remaining lives) copied from one to the
other?

How About a State Interface?

interface Form {

 void handleEnemy();

 void handleMushroom();

 void handleFireFlower();

 void handleFireButton();

}

Define an interface that represents the state that
the player avatar may be in.

It should define a method for each of the
behaviors that changes based on the current
state.

A Context

Create a context that represents the player
avatar.

public class PlayerAvatar {

 private Form currentForm;

 int score;

 int lives;

 void setForm(Form form) {

 currentForm = form;

 }

 public void enemyContacted() {

 currentForm.handleEnemy();

 }

 public void mushroomAcquired() {

 currentForm.handleMushroom();

 }

 // and so on...

}

The context contains all of the state required for
the player avatar including an instance of the
state interface that represents the current state.

The context also provides a (usually protected)
method used to change the current state.

In each method that changes behavior depending
on the current state, the context delegates to the
current state.

Concrete States

Create a concrete state for each of the possible
states that the player avatar may be in.

class SmallForm implements Form {

 private final PlayerAvatar avatar;

 SmallForm(PlayerAvatar avatar) {

 this.avatar = avatar;

 }

 public void handleEnemy() {

 avatar.loseALife();

 }

 public void handleMushroom() {

 avatar.score += 1000;

 avatar.grow();

 avatar.setForm(new SuperbForm(avatar));

 }

 // and so on...

}

In this example, the concrete state has a
reference to the context...

...which is used to change the state and/or call
methods on the context.

Some of the methods on the concrete state may
cause the context to transition to another state.

Additional concrete states may be added in the
future (e.g. Invincible Form).

GoF State Structure Diagram
Intent: Allow an object to alter its behavior when its internal
state changes. The object will appear to change its class.

(Behavioral)

Superb Plumber SiblingsTM State Design

Note that each class has a
context specific name
appropriate for the game.

But the pattern stereotypes are
also shown in <<guillemets>>
beneath each class name.

GoF Pattern Card

Name: Player Avatar Subsystem GoF Pattern: State

Participants

Class Role in Pattern Participant’s Contribution in the context of the application

PlayerAvatar Context Represents the player avatar in the system. Keeps track of the score,
remaining lives, etc. Delegates state-based behavior to its current state.

Form State Defines the set of behaviors that change based on the current state of
the player avatar. These include handling enemy contact, acquiring a
mushroom, acquiring a fire flower, and pressing the fire button.

SmallForm ConcreteState A player avatar form that represents the default state. Loses a life on
enemy contact, awards 1000 points and transitions to superb form when
a mushroom is acquired, and awards 1000 points and transitions to
shooter form when a fire flower is acquired. The fire button does
nothing.

SuperbForm ConcreteState The player avatar form after a small form acquires a mushroom. Enemy
contact transitions to the small form. Acquiring a mushroom awards
1000 points. Acquiring a fire flower awards 1000 points and transitions
to the shooter form. Pressing the fire button does nothing.

ShooterForm ConcreteState The player avatar form after small or superb forms acquire a fire flower.
Enemy contact transitions to the small form. Acquiring a mushroom or
fire flower awards 1000 points. Pressing the fire shoots a fireball.

Deviations from the standard pattern: None

Requirements being covered: 1. Small form, 2. Superb form, 3. Shooter form

State
The intent of the State pattern does not identify the key indicator for

the pattern.

● If the behavior of an object is defined by a finite state machine,

then the State pattern is appropriate.
○ No state machine = no need for this pattern.

● The intent refers to the internal state of the object, and object

state is not usually visible to external clients.

● Object behavior is defined by state machines more often than

you might realize.
○ The state machine is often implicit rather than explicit: it emerges

from the program logic.
○ It is often obfuscated in convoluted logic.

● Using a finite state machine to define behavior is a very

important skill to develop.
○ If nothing else, it helps provide a clear description of expected

behavior.

The State and Strategy patterns appear to
have identical structures. The UML
diagrams are nearly identical.

Both include a context that relies on
some interface (the state or strategy) to
which it delegates some/all of its behavior.

Changing the interface from one object to
another will cause the context to change
its behavior.

However, in the strategy pattern, some
external client controls the change from
one strategy to another.

But in the state pattern, the state of the
context only changes based on its current
state and some triggering event. External
clients do not directly control the
transition.

State

There are many issues to consider when implementing a State pattern.

● How do you define state changes?
○ Naive approach - explicitly code all state changes.
○ Transition table - defines inputs, outputs, and transitions for all states.

● Who is responsible for state changes?
○ Concrete States - Easier to extend. Do the states have the information

needed?
■ States become coupled. Why?

○ Context - Easier to understand.
■ Context potentially becomes coupled with all of the states. Why?

● When are Concrete State objects constructed?
○ Create all states when the Context is created.
○ Create/destroy states as needed.
○ Can Concrete States be shared by multiple context objects?

● Some kind of event mechanism is needed.

In the Player Avatar Subsystem the states
control the transitions in the context, and
the transitions are explicitly coded.

Q: How does this affect the encapsulation
in the system? What is the best way to
handle this in a language like Java?

State

There are several consequences to
implementing the strategy pattern:
● State-specific behavior is partitioned into

separate objects.
● State-transitions become explicit and the

context is protected from inconsistent
internal states.

● Managing the transition between states can
be messy or tricky.

● The context may be a “state holder.”
● Class Explosion (lots of states).

Things to Consider
1. How does State affect the

cohesion in the system?
2. The coupling?
3. Open Closed Principle?
4. How is state an example of

runtime inheritance?
5. How is the transition from one

state to another handled?
6. How might State work with

Observer?

